Investigation of the Structure of the v_1 Band of Monochloroacetylene

RAUNO ANTTILA and MIKKO HUHANANTTI

Department of Physics, University of Oulu, Oulu, Finland

(Z. Naturforsch. 23 a, 2098—2099 [1968]; received 19 September 1968)

The v_1 band of monochloroacetylene was investigated. The rotational structure of this $\mathcal{Z} - \mathcal{Z}$ type band was resolved and lines of both HCCCl³5 and HCCCl³7 were assigned. The rotational constants of these molecules were obtained both in the ground and the excited state. For the D constant of HCCCl³5 a value of $(4.8\pm1)\times10^{-8}~\mathrm{cm}^{-1}$ was obtained from the band. The constant was also computed theoretically and the result was $4.6\times10^{-8}~\mathrm{cm}^{-1}$.

The linearity of monohaloacetylene molecules has been confirmed by electron diffraction and microwave measurements 1, 2. The infrared spectrum of chloroacetylene has first been published by RICHARDson and Goldstein². Middleton and Sharkey³ recorded the spectrum of fluoroacetylene. Later Hunt and Wilson 4 studied the spectra of fluoro-, chloroand bromoacetylenes and assigned all the fundamentals both for hydrogen and deuterated compounds. The rotational constants B of these compounds in the ground state are known from microwave measurements 1,5 but no works on the rotational structures of the infrared bands of these molecules seem to have been published. Thus the B constants in excited states are mostly unknown. Neither have the centrifugal distortion constants D been measured for all these compounds.

The authors thus decided to try to investigate in detail some infrared bands of these molecules and the work was started with the CH-stretching band ν_1 of HCCCl.

The gas sample was prepared according to the method given by Bashford et al. ⁶. The gas was in a 10 cm cell. The pressure, some cm Hg, was not accurately measured. The measurements were carried out using the high resolution grating spectrometer at the University of Oulu ⁷.

The recorded spectrum clearly showed a central minimum but the exact position of the gap was not, however, quite obvious, because water vapour and especially some impurity in the sample gas caused disturbances just in the centre of the band. In the spectrum two line systems with slightly differing line spacings were easily detected. These were assigned to correspond to the isotopically different molecules HCCCl³⁵ and HCCCl³⁷, whose abundancies are approximately in the ratio 3:1. Nearly 200 lines were measured, all from at least three recordings. Their observed wavenumbers are given in Table 1.

The observed lines of HCCCl³⁵ were fitted to a third order polynomial and the result is given in Eq. (1):

$$\nu = 3340.673 + 0.37886 \text{ m} - 3.92 \times 10^{-4} \text{ m}^2 - 1.9 \times 10^{-7} \text{ m}^3.$$
 (1)

This fit is fairly close, the average deviation between an observed and calculated value is less than 0.010 cm^{-1} .

The lines of HCCCl³⁷ could not be measured up to so high quantum numbers as in the case of HCCCl³⁵. Thus the wavenumbers were now fitted to a second order polynomial given in Eq. (2):

$$v = 3340.645 + 0.37078 \text{ m} - 4.14 \times 10^{-4} \text{ m}^2$$
. (2)

The average deviation between an observed and calculated value is about 0.01 cm⁻¹.

The lines placed in parentheses in Table 1 were omitted in the derivation of the polynomials. In these cases the impurity causes perturbances, or the heavier isotopic molecule markedly shifts the lines of HCCCl³⁵.

The constants derived from the coefficients of the polynomials (1) and (2) are given in Table 2. The B'' values obtained here agree well with the micro-

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

¹ A. A. Westenberg, J. H. Goldstein, and E. Bright Wilson, Jr., J. Chem. Phys. 17, 1319 [1949].

² W. S. RICHARDSON and J. H. GOLDSTEIN, J. Chem. Phys. 18, 1314 [1950].

³ W. J. MIDDLETON and W. H. SHARKEY, J. Am. Chem. Soc. 81, 803 [1959].

⁴ G. R. Hunt and M. K. Wilson, J. Chem. Phys. 34, 1301 [1961].

⁵ J. K. Tyler and J. Sheridan, Trans. Faraday Soc. **59**, 2661 [1963].

⁶ L. A. Bashford, H. J. Emeleus, and H.V.A.Briscoe, J. Chem. Soc. 1938, 1358.

⁷ R. Anttila, Ann. Acad. Sci. Fenn. A VI, 254 [1967].

J	P(J)		R(J)		J	P(J)		R(J)	
	HCCCl35	HCCCl ³⁵	HCCCl ³⁷	HCCCl ³⁷		HCCCl35	HCCCl ³⁷	HCCCl35	HCCCl ³⁷
0			(41.092)		32	28.142	28.347	52.753	
1	(40.332)		41.448		33	27.740	27.956	53.104	
$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	_		41.824		34	27.347	27.552	(53.443)	
	39.527		42.189		35	26.938	27.146	53.803	
4	39.165		_		36	26.524	26.752	54.159	
5	38.779		42.930		37	26.119	26.354	54.503	
6	38.408		43.301		38	25.710	25.950	54.853	
7	38.007		43.669		39	25.313	25.547	55.185	
8	37.613		44.036		40	24.901	25.133	(55.553)	
9	(37.167)		44.405	44.268	41	24.497	24.743	(55.872)	
10	_		44.777	44.629	42	24.073	24.344	56.224	
11	36.472		(45.159)	44.985	43	23.678	23.938	56.559	
12	36.094		(45.516)		44	23.258	23.533	56.918	
13	35.709		45.893	45.750	45	22.851		57.231	
14	35.316		46.263	46.103	46	22.427	22.725	57.593	
15	34.938		46.623	46.491	47	22.014	22.299	57.930	
16	_		46.995	46.837	48	21.590		(58.282)	
17	(34.174)		47.355	47.215	49	21.187		(58.542)	
18	33.744	33.868	47.722	47.535	50	20.756		58.943	
19	33.351	33.472	_		51	(20.297)		(59.309)	
20	32.937	33.076	48.448	48.250	52	19.940		_	
21	32.543	32.687	48.805	48.613	53	19.535		59.971	
22	32.149	32.283	49.178	48.960	54	19.096		60.275	
23	(31.759)	31.911	49.534	49.307	55	18.686		60.620	
24	31.369		49.887	49.662	56	18.282		(61.026)	
25	30.963	31.115	50.247	50.027	57	17.869		61.302	
26	30.550	30.731	_		58			_	
27	30.142	30.339	50.969		59			61.951	
28	29.736	29.940	51.318		60			62.279	
29	29.329	29.563	51.681		61			62.615	
30 31	$(28.934) \\ 28.542$	29.159	$52.042 \\ 52.396$		62			62.931	
91	20.042		04.000						

Table 1. Observed wavenumbers (cm $^{-1}$ in vacuum) in the ν_1 band of monochloroacetylene. 3300 cm $^{-1}$ should be added to the numbers given.

Constant	HCCCl35	HCCCl ³⁷	Reference
$B^{\prime\prime}[\mathrm{cm}^{-1}]$	$0.189606 \ 0.18963 \pm 5 imes 10^{-5}$	$0.185874 \ 0.18560 \pm 3 imes 10^{-4}$	Microwave measurement ¹ Infrared spectrum, this work
$\alpha_1[\mathrm{cm}^{-1}]$	$(3.92\pm0.05) imes10^{-4}$	$(4.14 \pm 0.20) imes 10^{-4}$	Infrared spectrum, this work
$D[\mathrm{cm}^{-1}]$	$egin{array}{l} (4.8\pm1) imes10^{-8} \ 4.6 imes10^{-8} \end{array}$	$4.5 imes10^{-8}$	In fr ared spectrum, this work Theor. value, this work

Table 2. Molecular constants of HCCCl.

wave data of Westenberg et al. 1. The centrifugal distortion constant D was also computed theoretically from the formula presented by Wilson 8 and using the force constants and geometrical parameters of Hunt and Wilson 4. The experimental value is within the limits of error in fairly good agreement with the computed one. No former values seem to exist with which these results could be compared.

Acknowledgement

The authors are grateful to Professor P. Tuomikoski for reading the manuscript, to Mr. S.-E. Masar, Department of Chemistry, for valuable advice concerning the preparation of the sample and to Mr. K. Kantanen for measuring most recordings. This work has been supported by the National Research Council for Sciences.

⁸ E. B. Wilson, J. Chem. Phys. 27, 986 [1957].